A METAL-LIGAND COOPERATIVE PATHWAY FOR OXA-MICHAEL ADDITIONS TO UNSATURATED NITRILES

Sébastien Perdriaud,¹ Douwe S. Zijlstra,¹ Hero J. Heeres,¹ Johannes G. de Vries,¹,³ Edwin Otten¹*

¹ Stratingh Institute for Chemistry, University of Groningen, The Netherlands
² Department of Chemical Engineering, University of Groningen, The Netherlands
³ Leibniz-Institut für Katalyse, Universität Rostock, Germany
e-mail: edwin.otten@rug.nl

Although conjugate addition of carbon nucleophiles to ,-unsaturated substrates (Michael addition) is a powerful method for C-C bond formation, the analogous reaction with oxygen nucleophiles (oxa-Michael addition) to form C-O bonds is less straightforward.[1] This is due to the low nucleophilicity of alcohols and the reversibility of the oxa-Michael addition. While catalytic methods have been developed using either strong bases (to generate a more reactive alkoxide nucleophile) or Lewis/Bronsted acids (to activate the Michael acceptor), these reactions are far from efficient, especially for challenging substrates such as -substituted unsaturated nitriles.

Here we describe catalytic oxa-Michael additions of alcohols to butene- and pentenenitriles to give 3-alkoxyalkanenitriles in excellent yields under mild, additive-free conditions using a PNN Ru pincer complex (1) with a dearomatized backbone.[2] The isolation of a catalytically competent Ru-dieneamido complex from the reaction between 1 and pentenenitrile in combination with DFT calculations supports a mechanism in which activation of the nitrile CN moiety via metal-ligand cooperativity is a key step.[3] The nitrile-derived Ru-N moiety is sufficiently Brønsted basic to activate the alcohol and initiate conjugate addition of alkoxide to the ,-unsaturated fragment in a concerted manner involving a 6-membered transition state (see scheme). These features allow the reaction to proceed at ambient temperature in the absence of external base. In addition, this new catalytic pathway using metal-ligand cooperativity leads to selective addition of alcohols over amines, and allows good yields to be obtained even for substrates containing base-sensitive functional groups.

2) C. Gunanathan, D. Milstein, Chem. Rev. 2014, 114, 12024